A kémia


A kémia egy tudomány amiben anyagokkal kísérleteznek.

kémia

   A kémia tudományát négy fő történeti korszakra lehet felosztani; mint a természettudományban is,az  áttörés itt is a 18. század körül jelentkezett. Az első kémikus, anyagi változást előidéző, a tüzet használó ősember volt. Ezt követően évezredekig tapasztalatgyűjtés következett, az ógörögök egyfajta atommodellel álltak elő. Démokritosz már azt állította, hogy az anyagok atomokból állnak. Az atomokat különböző formájú, szabad szemmel nem látható részecskéknek képzelte. Például - szerinte - ha az anyag édes, akkor az atom alakja gömbölyű, ha csípős, akkor érdes, ha nyúlós (pl.: méz), akkor atomjai hosszúkásak, egymásba akadók. Ezzel ellentétben az elfogadott feltételezés az volt, hogy az anyagok a négy őselem (tűz, víz, föld, levegő) különböző arányú keverékéből állnak. A középkorban az alkímia keretein belül folytak kutatások, de mára ez okkult és/vagy misztikus tudománynak számít. A halhatatlanságot biztosító életelixír és a minden fémet arannyá változtató bölcsek kövének keresése közben számos eljárást, vegyületetfedeztek fel és fejlesztettek ki. Az alkímiával párhuzamosan létezett jatrokémia (iatrokémia) is, amely az "életfolyamatok kémiája" volt, és szemben állt az alkímiával. Később, a 18. századtól rohamosan gyorsuló fejlődésnek indult a diszciplína. Épp csak feltalálják az ipari kénsavgyártást, nem sokkal később megdől a vis vitalis elmélet, és kettéválik a kémia szerves és szervetlen kémiára. Sorban fedezik fel az új elemeket, mikor egy orosz tudós, Mengyelejev előáll egy ötlettel: az elemeket atomsúlyuk szerint csoportosítva a tulajdonságaik periodikusan változnak, így a táblázatból hiányzó elemeket, sőt, azok tulajdonságait is meg tudta előre jósolni (például gallium, germánium); táblázatát később elnevezték periódusos rendszernek. A rohamosan fejlődő világ új tudományágakat hoz létre a kémiában is, például a petrolkémiát. Az atomelmélet folyamatosan fejlődik (Dalton, Rutherford, Thomson, Millikan, Bohr), majd Max Planck, Albert Einstein, Erwin Schrödinger és Werner Heisenberg munkásságának hatására teljesen új alapokra helyeződnek a természettudományok, kialakul a ma is elfogadott atomelmélet - már csak a neutront kell felfedeznie James Chadwicknek 1932-ben. A század második felétől egyre inkább háttérbe szorulnak az acetilén-alapú szerves szintézisek az iparban, és fokozatosan mindent kőolajból kezdenek előállítani. Napjainkra már a kémia eredményei körülveszik az embert....

A kvantum számok

Egy elektron állapotát egy atomban, illetve egy atompálya tulajdonságait kvantumszámokkal jellemezhetjük. A kvantumszámok:

  • Főkvantumszám: Az elektronnak az atommagtól való átlagos távolságát jellemzi. Minél nagyobb a főkvantumszám értéke, az elektron mozgása annál nagyobb térrészre terjed ki. Jele n. Értéke lehet 1, 2, 3... Az azonos főkvantumszámú elektronpályák héjakat alkotnak. A héjakat nagybetűkkel jelöljük. Az 1-es főkvantumszámú pályák alkotják a K, a 2-es főkvantumszámúak az L, a 3-as főkvantumszámúak az M, a 4-es főkvantumszámúak az N, az 5-ös főkvantumszámúak az O héjat. Az egyes héjakon {\displaystyle 2n^{2}} elektron tartózkodhat.
  • Mellékkvantumszám: Az elektron mag körüli mozgásából származó impulzusmomentumát illetve elektronpálya térbeli alakját jellemzi. Az adott pályán található elektron energiája a pálya alakjától is függ. Jele: l. Értéke 0, 1, 2, ... n-1 lehet (n a főkvantumszám). A mellékkvantumszámok helyett gyakran azok betűjeleit használjuk. 0 - s(=Sharp*) pálya, 1 - p(=principle*) pálya, 2 - d(=diffuse*) pálya, 3 - f(=fundamental*) pálya. Egy héjon belül az azonos mellékkvantumszámú pályák alhéjakat alkotnak. *=amikről rövidítették
  • Mágneses kvantumszám: Az elektron mag körüli mozgása miatt mágneses nyomaték is keletkezik. A mágneses kvantumszám az elektron pályamozgásából adódó mágneses momentumot jellemzi. Az adott alakú (adott mellékkvantumszámú) atompálya térbeli irányát is megadja. Jele: m. Értéke egy egész szám -l-től +l-ig. Ha a mellékkvantumszám 0, a pálya a térbeli állása csak egyféle lehet, a pálya gömbszimmetrikus. Ekkor a mágneses kvantumszám mindig 0. Ha a mellékkvantumszám 1, a mágneses kvantumszám 1, 0 vagy -1 lehet, egy p pálya háromféleképpen helyezkedhet el a térben, háromféle p-pálya lehetséges. d pályából ötféle (m = 2, 1, 0, -1, -2), f pályából hétféle (m = 3, 2, 1, 0, -1, -2, -3) létezik.
  • Spinkvantumszám: Az elektronoknak a pályamozgásukon kívül is van egy saját impulzusmomentumuk. Az elektron úgy viselkedik, mint egy elemi mágnes, amely a külső mágneses térben csak kétféleképpen állhat be: Az erővonalakkal ellentétes vagy megegyező irányban. Értéke -½ vagy +½ lehet.
  • spinvetület kvantumszáma: egy kitüntetett irányban az ms spinvetület kvantumszáma +1/2 vagy −1/2 lehet. Az atomban lévő elektron állapotát ezekkel a kvantumszámokkal is jellemezzük; az impulzusmomentum kvantumszámának különböző értékeit betűkkel jelöljük: s-sel jelöljük az l=0, p-vel az l=1, d-vel, f-fel, g-vel, h-val az l=2;3;4; értékeket. A 2p1 állapot így arra utal, hogy az elektron hullámfüggvényét az n=2, l=1, m=1 kvantumszámok határozzák meg. Az azonos főkvantumszámú állapotok energiája megegyezik; például a 2s0, 2p0, 2p1 azonos energiájú állapotok. Az n főkvantumszámú energiaszintek n2-szeresen elfajulta



Készítsd el weboldaladat ingyen! Ez a weboldal a Webnode segítségével készült. Készítsd el a sajátodat ingyenesen még ma! Kezdd el